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Abstract—Cross-modal retrieval has recently drawn much attention due to the widespread existence of multimodal data. It takes one

type of data as the query to retrieve relevant data objects of another type, and generally involves two basic problems: the measure of

relevance and coupled feature selection. Most previous methods just focus on solving the first problem. In this paper, we aim to deal

with both problems in a novel joint learning framework. To address the first problem, we learn projection matrices to map multimodal

data into a common subspace, in which the similarity between different modalities of data can be measured. In the learning procedure,

the ‘21-norm penalties are imposed on the projection matrices separately to solve the second problem, which selects relevant and

discriminative features from different feature spaces simultaneously. A multimodal graph regularization term is further imposed on the

projected data,which preserves the inter-modality and intra-modality similarity relationships.An iterative algorithm is presented to solve

the proposed joint learning problem, along with its convergence analysis. Experimental results on cross-modal retrieval tasks

demonstrate that the proposed method outperforms the state-of-the-art subspace approaches.

Index Terms—Subspace learning, coupled feature selection, half-quadratic minimization, cross-modal retrieval

Ç

1 INTRODUCTION

IN some real applications, data are often represented in
different ways or collected from diverse domains. As a

result, the data related to the same underlying content or
object may exist in different modalities and exhibit hetero-
geneous properties. For example, when visiting the Great
Wall, we may record it by taking pictures, posting a piece of
microblog, or recording a video clip. These data present the
same content, but they take different forms. With the rapid
growth of such multimedia data, there is an immediate
need for efficiently and effectively analyzing the data across
different modalities. Although much attention has been
paid to multimodal data analysis [1], [2], [3], [4], the com-
mon strategy is to integrate multiple modalities to improve
the learning performance. In this paper, we focus on cross-
modal retrieval, which aims to take one type of data as
query to retrieve relevant data objects of another type. For
example, a user can use a text to retrieve relevant pictures
and videos, or search relevant textual descriptions or videos
by submitting an interesting image as a query. Cross-modal
retrieval enables users to take any modality of content at
hand as a query. The search results of the cross-modal
retrieval are rich in multiple modalities, and thus are more
comprehensive than the results of traditional single-modal-
ity retrieval methods.

The cross-modal retrieval generally involves two basic
problems: the measure of relevance and coupled feature
selection. As shown in the next section, although somemeth-
ods have been proposed to solve the cross-modal problem,
most of them learn a common latent subspace to make all
modalities of data comparable. They mainly solve the first
basic problem, but the second one is not well addressed, that
is, how to simultaneously select relevant and discriminative
features from multimodal feature spaces. Here we call the
second problem “coupled feature selection”. Although vari-
ous feature selection methods [5], [6] have been developed
for the single modality data analysis, few previous work
attempts to perform common subspace learning and feature
selection simultaneously, which have been shown to be cou-
pled problems for the cross-modal problem [7].

To solve both problems mentioned above, this paper pro-
poses a novel joint learning framework (as shown in Fig. 1)
for the cross-modal retrieval problem by combining com-
mon subspace learning and coupled feature selection.
Firstly, inspired by the potential relationship between
Canonical Correlation Analysis (CCA) and linear least
squares [8], coupled linear regression is used to learn projec-
tion matrices to map data from different modalities into a
common subspace. At the same time, ‘21-norm is used to
select the relevant and discriminative features from differ-
ent feature spaces simultaneously, and a multimodal graph
regularization is used to preserve the inter-modality and
intra-modality similarity relationships when mapping. Sec-
ondly, based on the half-quadratic analysis for ‘21-norm [9],
we develop an iterative algorithm to solve the proposed
joint learning problem, and prove its convergence. Finally,
the proposed method is applied to several cross-modal
retrieval tasks. Experimental results on three publicly avail-
able datasets show that the proposed method outperforms
previous subspace approaches.
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The main contributions of our work include the
following:

� The proposed joint learning method elegantly com-
bines common subspace learning and coupled fea-
ture selection into a single framework. Experimental
results on cross-modal retrieval tasks show its
superiority.

� When learning projection matrices, a multimodal
graph regularization term is proposed to explicitly
preserve the inter-modality and intra-modality simi-
larity among multimodal data objects, which further
improves the performance.

� An iterative algorithm based on half-quadratic mini-
mization is proposed to efficiently solve the joint
learning objective function. Experimental results
demonstrate that it obtains promising results and
performs better than the state-of-the-art subspace
methods.

The remainder of this paper is organized as follows. In
Section 2, we briefly overview related work on the cross-
modal retrieval problem. Section 3 describes our proposed
joint learning framework for cross-modal retrieval, along
with an iterative algorithm to solve this problem. In Section 4,
we report experimental results on several cross-modal data-
sets. Finally, we conclude the paper in Section 5.

2 RELATED WORK

Since the cross-modal retrieval is considered as an important
problem in some real applications, various approaches have
been proposed to deal with this problem, such as probabilistic
models, metric learning approaches and subspace learning
methods, whichwill be introduced as follows, respectively.

2.1 Probabilistic Models

Probabilistic models have been widely applied to a specific
cross-modal problem, i.e., image annotation [10], [11]. To

capture the correlation between images and annotations,
Latent Dirichlet Allocation (LDA) [12] has been extended to
learn the joint distribution of multi-modal data such as Cor-
respondence LDA (Corr-LDA) [10] and Topic-regression
Multi-modal LDA (Tr-mm LDA) [11]. Corr-LDA uses topics
as the shared latent variables, which represent the underly-
ing causes of cross-correlations in the multi-modal data. Tr-
mm LDA learns two separate sets of hidden topics and a
regression module which captures more general forms of
association and allows one set of topics to be linearly pre-
dicted from the other. Jia et al. [13] propose a new probabi-
listic model to learn a set of shared topics across the
modalities. The model defines a Markov random field on
the document level which allows modeling more flexible
document similarities. Srivastava and Salakhutdinov pro-
pose a deep Boltzmann machine [14] to learn a multimodal
representation for multimodal data. However, these afore-
mentioned approaches just tend to model the one-to-one
correlation, which may not be able to capture the complex
structure of the multimodal data.

2.2 Metric Learning Approaches

Another perspective for cross-modal retrieval is to learn a
metric between different modalities of data. Li et al. [15]
introduce a cross-modal factor analysis (CFA) approach to
evaluate the association between two modalities. The CFA
method adopts a criterion of minimizing the Frobenius
norm between pairwise data in the transformed domain.
Wu et al. [16] study the metric learning problem to find the
similarity function over two different spaces. Mignon and
Jurie [17] propose a metric learning approach for cross-
modal matching, which considers both positive and nega-
tive constraints. Quadrianto and Lampert [18] propose a
new metric learning scheme to learn projections from the
data in different modalities into a shared feature space, in
which the Euclidean distance provides a meaningful intra-
modality and inter-modality similarity. Zhai et al. [19]

Fig. 1. The overview of the proposed method. U1 and U2 are projection matrices learned by our method for image and text spaces, respectively. They
project different modalities of data into a common space, while performing feature selection on different feature spaces. The proposed method also
preserves the inter-modality and intra-modality similarity relationships when mapping.
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propose a regularized metric learning algorithm to learn a
heterogeneous metric for cross media retrieval. Lu et al. [20]
and Wu et al. [21] study the cross-modal retrieval as a prob-
lem of learning to rank. They utilize the structural SVM to
learn a metric such that the ranking of the data induced by
the distance from a query can be optimized against various
ranking measures. In [22], [23], [24], the learnt Hamming
metric is used to speed up the cross-modal search, but the
Hamming metric is discrete-valued so that its retrieval accu-
racy is lower. These methods mentioned above generally
treat similar pairs and dissimilar pairs or rank lists equally
when modeling the structure of the multimodal data. How-
ever, some less informative pairs and rank lists may poten-
tially lead the model to depart from the correct structure,
which degrades the performance.

2.3 Subspace Learning Methods

Recently, several approaches for establishing inter-modal
relationships between data from different modalities gener-
ally rely on subspace learning, such as Canonical Correla-
tion Analysis [25], [26], Partial Least Squares (PLS) [27] and
Bilinear Model (BLM) [28], [29]. Specifically, CCA is proba-
bly the most popular one due to its wide-spread use in
cross-media retrieval [30], [31], [32], cross-lingual retrieval
[33] and some vision problems [34].

Rasiwasia et al. [30] address the cross-modal retrieval
problem by investigating the correlations between two
modalities, where CCA is proved to be effective. Li
et al. [34] apply CCA to face recognition based on non-corre-
sponding region matching. They use CCA to learn a com-
mon space in which the possibility of whether two non-
corresponding face regions belong to the same face can be
measured. Recently, Partial Least Squares [27] is also used
for the cross-modal matching problem. To perform multi-
modal face recognition, such as front versus profile, photos
vs. sketches, and high-resolution photos versus low-resolu-
tion photos, Sharma and Jacobs [35] use PLS to linearly map
images in different modalities to a common linear subspace
in which they are highly correlated. Chen et al. [36] apply
PLS to the cross-modal document retrieval. They use PLS to
switch the image features into the text space, then learn a
semantic space for the measure of similarity between two
different modalities. In [29], Tenenbaum and Freeman pro-
pose a bilinear model to derive a common space for cross-
modal face recognition, and BLM is also used for text-image
retrieval in [28].

Besides CCA, PLS and BLM, there are some other meth-
ods for the cross-modal problem. Mahadevan et al. [37] pro-
pose maximum covariance unfolding, a manifold learning
algorithm for simultaneous dimensionality reduction of
data from different input modalities. Mao et al. [38] intro-
duce a method for cross media retrieval, named parallel
field alignment retrieval, which integrates a manifold align-
ment framework form the perspective of vector fields. Lin
and Tang [39] propose a common discriminant feature
extraction (CDFE) method to learn a common feature sub-
space where the difference of within scatter matrix and
between scatter matrix is maximized. Recently, Sharma
et al. [28] extend Linear Discriminant Analysis (LDA) and
Marginal Fisher Analysis (MFA) to their multiview

counterparts, i.e., Generalized Multiview LDA (GMLDA)
and Generalized Multiview MFA (GMMFA), and apply
them to deal with the cross-media retrieval problem.
GMLDA and GMMFA take the semantic category into
account, and obtain promising results.

Besides these three kinds of methods, there are some
other methods [40], [41], [42], [43], [44], [45] proposed for
the cross-modal problem, such as the dictionary learning
method [40], the graph-based learning method [42], the
constraint propagation method [43], [44], and so on. There
is also some related work on multi-view embedding meth-
ods [46], [47], [48], [49], [50], which have been applied to
document categorization, image annotation, multi-class
classification, etc. Weston et al. [48] propose to learn a
joint space for images and annotations and optimize a
ranking objective function to rank the annotations for
images. However, the ranking error functions are explic-
itly designed for annotations. It cannot be directly used in
general multimodal case. The algorithm in [49] maps clas-
ses into a semantic space, and then maps the document
into the same space for document categorization. To deal
with large multi-class tasks, Bengio et al. [46] propose to
embed labels into a low dimensional space. Since the clas-
ses/labels are supervised information, these multi-view
methods are actually developed for dealing with one
modality of data.

Thanks to the continuous effort made by researchers, we
have witnessed great advances in the cross-modal retrieval
field. However, most of them mainly focus on the measure-
ment of relevance, and coupled feature selection has not
been well addressed. Since the dimensionality of real world
data is often high, there are naturally redundant and irrele-
vant features. Hence, how to simultaneously select the rele-
vant and discriminative features for different modalities of
data is very important. Accordingly, we aim to jointly per-
form common subspace learning and coupled feature selec-
tion in this work. To achieve this goal, we propose a generic
minimization formulation by combining linear regressions,
‘21-norms and a multimodal graph regularization term,
which will be detailed in the next section.

This paper is built upon our preliminary conference ver-
sion [7]. The main extensions are summarized as follows.

(1) While the previous method in [7] applied the low-
rank constraint to enhance the relevance of similar
objects, we now propose a multimodal graph to bet-
ter model the similarity relationships among differ-
ent modalities of data, which is demonstrated to
outperform the low-rank constraint in terms of both
computational cost and retrieval performance.

(2) Accordingly, a new iterative algorithm is proposed
to solve the modified objective function and the
proof of its convergence is given. Furthermore, we
validate the convergence of this iterative algorithm
in our experiments.

(3) Experimentally, we add new experiments on the
NUS-WIDE dataset, which further validate the effec-
tiveness of our method. In addition, we provide
additional discussion of the experimental results,
and analyze the parameters sensitivity of the pro-
posed method.
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3 JOINT FEATURE SELECTION AND SUBSPACE

LEARNING

3.1 Problem Formulation

We begin with a brief introduction to some notations used
here. For matrix M 2 Rn�m, its ith row, jth column are

denoted by mi, mj respectively. The Frobenius norm of the

matrix M is defined as Mk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 mik k22
q

. And Mk k2;1
is the sum of the ‘2-norm of the rows of M:

Mk k2;1 ¼
Pn

i¼1 mik k2.

3.1.1 Problem Statement

Suppose that we have a collection of data from M different

modalities, with fx1i ; . . . ; xMi g representing the same under-
lying content or objects. For example, the text, image, audio
and video are often used to describe the same topic. Given a
query from one modality, the goal of the cross-modal
retrieval is to return the top k closest matches in another
modality.

As mentioned above, the cross-modal retrieval generally
involves two problems. Previous methods mainly focus on
the first problem. They project data from different modali-
ties into a latent space, in which the possibility of whether
two different modal data represent the same semantic con-
cept can be measured. However, the second problem, i.e.,
coupled feature selection, is usually ignored. Based on this
consideration, we propose that the feature selection proce-
dure should be performed on different feature spaces simul-
taneously for better retrieval.

3.1.2 The Objective Function

Let L ¼ fx1i ; x2i ; . . . ; xMi gNi¼1 denote N labeled multimodal
documents, and each document contains data from M dif-
ferent modalities representing the same semantic. Since the

data from different modalities Li¼ fx1i ; x2i ; . . . ; xMi g repre-
sent the same semantic, they should share the same repre-
sentation in a common space, denoted by yi. Let

Y ¼ ½y1; y2; . . . ; yN �T denote the representation matrix.

Xp ¼ ½xp1; xp2; . . . ; xpN � 2 Rdp�N; p ¼ 1; 2; . . . ;M represent the
labeled data matrices from M modalities, respectively.

Xb
p ¼ ½xp1; xp2; . . . ; xpNþEp

� 2 Rdp�ðNþEpÞ; p ¼ 1; 2; . . . ;M, repre-

sent the matrices of both labeled and unlabeled data. The
pth modality has N labeled samples and Ep unlabeled sam-
ples embedded in the dp dimensional space. The goal of our
method is to learn a projection matrix for each modality of
data, which can be used to project data from different
modalities into a common space. Then, we can perform
cross-modal retrieval in the common space.

Firstly, we learn the low-dimensional representations

Y ¼ ½y1; y2; . . . ; yN �T for the multimodal documents fLigNi¼1.
In the general graph embedding framework, the optimal
embedding Y can be obtained by

min
Y

X
i;j

wijjjyi � yjjj2 (1)

under the constraint YTBY ¼ I, and B is a diagonal matrix
with Bii ¼

P
j wij. wij indicates whether the multimodal

documents Li and Lj represent similar semantic, which is

defined as follows:

wij ¼ 1=Nt; if Li and Lj belong to the tth class
0; otherwise

�
(2)

where Nt is the number of documents in the tth class. The
solution of Eq. (1) is given as below [51]:

vt ¼ ð 0; :::0|fflffl{zfflffl}Pt�1

i¼1
Ni

; 1; :::1|fflffl{zfflffl}
Nt

; 0; :::; 0|fflfflffl{zfflfflffl}Pc

i¼tþ1
Ni

Þ; t ¼ 1; . . . ; c; (3)

where c is the number of classes. So the low-dimensional

representations are obtained as Y ¼ ðv1; v2; . . . ; vcÞ 2 RN�c.
Next, we learn a projection matrix for each modality to

map different types of data into the common space, in
which the similarity between different modalities of data
can be measured. At the same time, we perform ‘21-norm
on the projection matrices for coupled feature selection, and
preserve the inter-modality and intra-modality similarity
relationships among M different modalities of data objects.
That is, we have a generic minimization problem in the fol-
lowing form,

min
U1;:::;UM

XM
p¼1

jjXT
pUp � Yjj2F þ �1

XM
p¼1

jjUpjj21

þ �2VðU1; . . . ;UMÞ;
(4)

where Up; p ¼ 1; . . . ;M are the projection matrices for theM
modalities of data respectively. The first term is a coupled
linear regression term, which is used to learn projection
matrices for mapping different modal data into the common
space. The second term contains M ‘21-norms that play a
role of feature selection on different feature spaces simulta-
neously. The third term is a multimodal graph regulariza-
tion, which can preserve the inter-modality and intra-
modality similarity relationships effectively. Note that the
third term is different from that in the previous version [7].
The multimodal graph regularization is more helpful for
modeling the structure of the multimodal data.

3.1.3 The Multimodal Graph Regularization

We use both labeled and unlabeled data to construct the
multimodal graph according to two kind of relationships as
shown in Fig. 2. The two kinds of relationships among the
multimodal data are defined as follows:

1) Inter-modality similarity relationship: it is well known
that although different modalities of data have dif-
ferent representations and are in different feature
spaces, they share similar semantics if they are
related to the same content or topic, which can be
understood as the inter-modality similarity relation-
ship. For example, if they belong to the same class,
they are similar on the topic. We hope to preserve
the inter-modality similarity relationship when
learning the common space. According to the inter-
modality similarity relationship, we define the simi-
larity matrix Wpq between the pth modality and the
qth modality as follows:
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Wpq
ij ¼ 1; if xpi has similar semantics to xqj

0; otherwise:

�
(5)

2) Intra-modality similarity relationship: we also hope to
preserve the intra-modality similarity relationship
among data objects within each single modality, i.e.,
the data objects with the neighborhood relationship
should be close to each other in the common space.
To preserve the local structural information within
each single modality, a kNN similarity graph is con-
structed here. The similarity matrix Wp within the
pth modality is defined as below:

Wp
ij ¼ expð�zpij=2s

2Þ; if xpi 2 Nkðxpj Þ or xpj 2 Nkðxpi Þ
0; otherwise;

�
(6)

where zpij is the Euclidean distance between xpi and

xpj , i.e., z
p
ij ¼ xpi � xpj

��� ���2, and Nkðxpi Þ denotes the set of
k nearest neighbors of xpi .

According to the two kinds of similarity relationships,
we feed all different modalities of data into a joint multi-
modal graph. The overall similarity matrix W is defined as
follows:

W ¼
bW1 W12 . . . W1M

W21 bW2 . . . W2M

..

. ..
. . .

. ..
.

WM1 WM2 . . . bWM

2
6664

3
7775; (7)

where b is a parameter which balances the effect of the
inter-modality similarity and the intra-modality similarity.

Wij; i; j ¼ 1; . . . ;M indicates the inter-modality similarity

defined by Eq. (5), and Wi; i ¼ 1; . . . ;M indicates the intra-
modality similarity defined by Eq. (6).

Based on the multimodal graph, the third term of Eq. (4)
is defined as follows:

VðU1; :::;UMÞ ¼ 1

2

XN̂
i¼1

XN̂
j¼1

Wijjjfi � fjjj2

¼ TrðFLFT Þ;
(8)

where N̂ is the number of the total samples from all modali-

ties, and L ¼ D�W is the Laplacian matrix. F ¼ ðFT1 ; . . . ;
FTMÞ ¼ ðUT

1X
b
1; . . . ;U

T
MXb

MÞ denotes all modalities of pro-
jected data in the common space. Eq. (8) can be rewritten as

VðU1; :::;UMÞ ¼
XM
p¼1

XM
q¼1

TrðUT
p X

b
pLpqðXb

qÞ
T
UqÞ: (9)

The multimodal graph regularization term encourages a
mapping which preserves the inter-modality and intra-
modality similarity. It is a generalized graph which takes
different kinds of data into consideration.

3.2 Optimization Algorithm

3.2.1 An Iterative Algorithm

In this subsection, an iterative algorithm based on the half-
quadratic minimization [9], [52] is proposed to solve the
objective function in (4).

If we define fðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ "

p
, we can replace Up

�� ��
21

withPdp
i¼1 fð ui

p

��� ���
2
Þ , according to the analysis for the ‘21-norm in

[9]. And " is a smoothing term, which is usually set to be a

small value. It can be proved that fðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ "

p
satisfies

all conditions as follows:

x !fðxÞ is convex on R;

x !fð ffiffiffi
x

p Þ is concave on Rþ;
fðxÞ ¼fð�xÞ; 8x 2 R;

fðxÞ is C1onR;

f
00 ð0þÞ > 0; lim

x!1fðxÞ=x2 ¼ 0:

(10)

Then, we can optimize fð�Þ in a half-quadratic way [53]
according to the following Lemma 1 [9].

Lemma 1. Let fð�Þ be a function satisfying all conditions in

(10), for a fixed uik k2, there exists a dual potential func-
tion ’ð�Þ, such that

fð ui
�� ��

2
Þ ¼ inf

s2R
s ui
�� ��2

2
þ’ðsÞ

n o
; (11)

where s is determined by the minimizer function ’ð�Þ
with respect to fð�Þ.

According to Lemma 1, the objective function in (4) can
be reformulated as follows:

min
U1;:::;UM

XM
p¼1

jjXT
pUp � Yjj2F þ �1

XM
p¼1

TrðUT
pRpUpÞ

þ �2

XM
p¼1

XM
q¼1

TrðUT
pX

b
pLpqðXb

qÞ
T
UqÞ;

(12)

where Rp ¼ DiagðrpÞ. And rp is an auxiliary vector of the

‘21-norm, where the ith element rip ¼ 12jjui
pjj2. The elements

of rp are regularized respectively as follows1:

rip ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjui

pjj22 þ "
q ; (13)

Fig. 2. The multimodal graph is constructed according to inter-modality
and intra-modality similarity relationships.

1. Note that jjui
pjj2 can be zero theoretically. However, we cannot set

rip to zero, otherwise the iterative algorithm cannot be guaranteed to

converge. To solve this problem, we regularize rip in Eq. (13).

2014 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 10, OCTOBER 2016

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 24,2021 at 11:46:31 UTC from IEEE Xplore.  Restrictions apply. 



where " is a smoothing term, which is usually set to be a
small constant value.

Differentiating the objective function in (12) with respect
to Up and setting it to zero, we have the following equation:

XpðXT
pUp � YÞ þ �1RpUp þ �2X

b
pLppðXb

pÞTUp

þ �2

X
q 6¼p

Xb
pLpqðXb

qÞ
T
Uq ¼ 0;

(14)

which can be rewritten as

ðXpX
T
p þ �1Rp þ �2X

b
pLppðXb

pÞT ÞUp

¼ XpY� �2

X
q 6¼p

Xb
pLpqðXb

qÞ
T
Uq:

(15)

Then, the optimal solution of (14) can be computed via solv-
ing the above linear system problem.

Algorithm 1: Joint Feature Selection and Subspace
Learning (JFSSL)

Input:
The matrix of both labeled and unlabeled data Xb

p

2 Rdp�ðNþEpÞ;
The matrix of labeled data Xp 2 Rdp�N ;
The low-dim representation Y 2 RN�c;

Output:
The projection matrices Up 2 Rdp�c; p ¼ 1; . . . ;M;

(a) Compute the Laplacian matrix of the multimodal graph L;
(b) Set t ¼ 0. Initialize Up; p ¼ 1; . . . ;M as identity matrix.

repeat
1. Compute rtp according to Eq. (13).
2. By solving the linear system problem in Eq. (15), Ut

p is
updated as follows:

Utþ1
p ¼ ðXpX

T
p þ �1Rp þ �2X

b
pLppðXb

pÞT Þ�1ðXpY

� �2

X
q 6¼p

Xb
pLpqðXb

qÞ
T
Ut

qÞ (16)

3. t ¼ tþ 1
until Converges

Algorithm 1 summarizes the alternate minimization
procedure to optimize (4). Firstly, we construct the multi-
modal graph and compute the graph Laplacian matrix L in
Step (a); In Step 1 of the loop, we compute the auxiliary
vectors rp; p ¼ 1; . . . ;M that correspond to the ‘21-norms
and play an important role in feature selection on different
feature spaces. In Step 2, we find the solution Up; p ¼
1; . . . ;M. Here the iteration continues until convergence. In
our experiments, it takes about five iterations before
convergence.

3.2.2 Convergence

We show that the proposed iterative algorithm in Algorithm
1 converges by the following theorem.

Theorem 1. The iterative algorithm in Algorithm 1 will
monotonically decrease the objective function in Eq. (12)
in each iteration until convergence.

Proof. The problem in Eq. (12) is equivalent to

min
U

TrðUTRUÞ þ gTrðUTGUÞ
s:t: XT

pUp ¼ Y; p ¼ 1; . . . ;M;
(17)

where g ¼ �2=�1, U, R andG are defined as follows:

U ¼
U1

U2

..

.

UM

2
6664

3
7775;R ¼

R1

R2

. .
.

RM

2
6664

3
7775; (18)

G ¼

G11 G12 . . .G1M

G21 G22 . . .G2M

..

. ..
. . .

. ..
.

GM1GM2 . . .GMM

2
666664

3
777775
; (19)

where we setGpq ¼ Xb
pLpqðXb

qÞT ; p; q ¼ 1; . . . ;M.

According to Algorithm 1, it can be inferred from (17)
that

Utþ1 ¼ min
U

TrðUT ðRt þ gGÞUÞ
s:t: XT

pUp ¼ Y; p ¼ 1; . . . ;M:
(20)

Therefore, we have

TrðUT
tþ1ðRt þ gGÞUtþ1Þ4TrðUT

t ðRt þ gGÞUtÞ

)
Xd
i¼1

ui
tþ1

�� ��2
2

2 ui
tk k2

þ gTrðUT
tþ1GUtþ1Þ

4
Xd
i¼1

ui
t

�� ��2
2

2 ui
tk k2

þ gTrðUT
t GUtÞ:

(21)

Then we have the following inequality

Xd
i¼1

ui
tþ1

�� ��
2
þ gTrðUT

tþ1GUtþ1Þ

�
�Xd

i¼1

ui
tþ1

�� ��
2
�
Xd
i¼1

ui
tþ1

�� ��2
2

2 ui
tk k2

�

4
Xd
i¼1

ui
t

�� ��
2
þ gTrðUT

t GUtÞ

�
�Xd

i¼1

ui
t

�� ��
2
�
Xd
i¼1

ui
t

�� ��2
2

2 ui
tk k2

�
:

(22)

It has been shown in [54] that for any nonzero vectors

ui
t
h
t¼1

�� , the following inequality holds:

Xd
i¼1

ui
tþ1

�� ��
2
�
Xd
i¼1

ui
tþ1

�� ��2
2

2 ui
tk k2

4
Xd
i¼1

ui
t

�� ��
2
�
Xd
i¼1

ui
t

�� ��2
2

2 ui
tk k2

;

(23)

where h is an arbitrary number. Thus, we can get the fol-
lowing inequality:
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Xd
i¼1

ui
tþ1

�� ��
2
þ gTrðUT

tþ1GUtþ1Þ

4
Xd
i¼1

ui
t

�� ��
2
þ gTrðUT

t GUtÞ;
(24)

which indicates that the objective function value of (12)
monotonically decreases until convergence using the
proposed iterative approach in Algorithm 1. tu

3.2.3 Complexity

Finally, we briefly discuss the computational complexity. Let
Np; p ¼ 1; 2; . . . ;M denote the number of the samples belong-
ing to the p-modality. For the multimodal graph, constructing

the inter-modality similarity matrix takes Oð12
PM

p¼1

PM
q¼1

NpNqÞ time, and constructing the intra-modality similarity

matrix takesOðPM
p¼1 ðdp þ kÞN2

p Þ time. The values ofM and k

are usually small constants. Hence, the complexity of comput-

ing the Laplacian matrix is approximately OðdmN2
mÞ, where

dmN
2
m for the mth modality is the largest one among all

modalities. In Step 2, instead of calculating the inverse of a
few matrices, we update the projection matrices by solving a
system of linear equations, among which the most complex

part takesOðd̂2Þ (d̂ ¼ maxðd1; . . . ; dpÞ).

4 EXPERIMENTAL RESULTS

4.1 Data Sets

The Pascal VOC dataset [55] consists of 5,011/4,952 (train-
ing/testing) image-tag pairs, which can be categorized into
20 different classes. Since some images are multi-labeled,
we select images with only one object as the way in [28],
resulting in 2,808 training and 2,841 testing data. The image
features are 512-dimensional Gist features [55], and the text
features are 399-dimensional word frequency features.

The dataset used here is theNUS-WIDE dataset [56]: each
image is associated with user tags, which can be taken as an
image-text pair. To guarantee that each class has abundant
training samples like [57], we select those pairs that belong
to one of the 21 largest classes with each pair exclusively
belonging to one of the 21 classes, which results in 72,219
image-text pairs. The images are represented with a 500-
dimensional SIFT feature vectors [58], and the textual tags
are represented with 1,000-dimensional tag occurrence fea-
ture vectors. We take 50 percent of the data as the training
set and the remaining as the testing set.

The Wiki image-text dataset [30], generated from
Wikipedia’s “featured article”, consists of 2,866 image-text
pairs. In each pair, the text is an article describing people, pla-
ces or some events and the image is closely related to the con-
tent of the article. Each pair is labeled with one of 10 semantic
classes. We split it into a training set of 1,300 pairs (130 pairs
per class) and a testing set of 1,566 pairs. The representation
of the text with 10 dimensions is derived from a latent Dirich-
let allocation model [12]. The images are represented by the
128 dimensional SIFT descriptor histograms [58].

4.2 Evaluation Metrics

To evaluate the performance of the proposed JFSSL method,
two cross-modal retrieval tasks are conducted: (1) Image

query versus Text database, (2) Text query versus Image
database. In testing phase, we map the multimodal data
into the common subspace using the learned projection
matrices. We take one modality of data of the testing set as
the query set to retrieve another modality of data. The
cosine distance is adopted to measure the similarity of fea-
tures. Given an image (or text) query, the goal of each cross-
modal task is to find the nearest neighbors from the text (or
image) database.

The mean average precision (MAP) [30] is used to evaluate
the overall performance of the tested algorithms. To com-
pute MAP, we first evaluate the average precision (AP) of a
set of R retrieved documents by AP ¼ 1

T

PR
r¼1 P ðrÞdðrÞ

where T is the number of relevant documents in the
retrieved set, P ðrÞ denotes the precision of the top r
retrieved documents, and dðrÞ ¼ 1 if the rth retrieved
document is relevant (where relevant means belonging
to the class of the query) and dðrÞ ¼ 0 otherwise. The
MAP is then computed by averaging the AP values over
all queries in the query set. The larger the MAP, the bet-
ter the performance.

Besides the MAP, we also use precision-scope curve [59]
and precision-recall curve [30] to evaluate the effectiveness of
different methods. The scope is specified by the number (K)
of top-ranked documents presented to the users.

4.3 Compared Methods

We compare with a number of state-of-the-art methods:
three popular methods (i.e., PLS [35], BLM [28], [29] and
CCA [25], [30]) utilizing the pairwise information and four
popular supervised methods (i.e., CDFE [60], GMLDA [28],
GMMFA [28] and CCA-3V [31]) which take semantic cate-
gory information into account. We also compare with the
previous version of our method (Learning Coupled Feature
Spaces, LCFS) [7].

PLS, BLM and CCA are three classical methods which use
pairwise information to learn a common latent subspace
across multi-modal data. In the common subspace, the simi-
larity between different modalities of data can be measured.
The abovementioned approaches enforce pair-wise closeness
betweendifferentmodalities of data in the common subspace.

CDFE, GMLDA, GMMFA and CCA-3V are supervised
methods which exploit the label information. Due to the use
of label information, CDFE, GMLDA, GMMFA and CCA-
3V learn a discriminative common subspace. CCA-3V
defines the similarity function between different modalities
of data by setting different weights on the learnt representa-
tion to improve the performance. However, it does not per-
form feature selection on raw features of different
modalities of data. In contrast, JFSSL resorts to ‘21-norm to
perform feature selection. Although the ‘21-norm is mini-
mized by an iteratively reweighted way, it is significantly
different from the way of setting weights on representa-
tions. As a result, the sparse projections learned by JFSSL
can lead to feature selection on raw features.

4.4 Parameter Setting

Note that the objective function in Eq. (4) mainly involves
three parameters �1, �2 and b. �1 is the weighting parameter
of the ‘21-norms, �2 is the weighting parameter of the
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multimodal graph regularization, and b is the parameter
which balances the effect of inter-modality and intra-modal-
ity similarity relationships. We tune them from f0:001; 0:01;
0:1; 1; 10; 100g by cross validation. We will discuss the
parameter sensitivity in the following. For the compared
methods, we tune their parameters according to the corre-
sponding literature.

4.5 Perfomance on Cross-Modal Retrieval

4.5.1 Results on Pascal VOC Dataset

As mentioned in Section 2, since the compared methods
mainly focus on learning a common subspace, Principal

Component Analysis (PCA) is performed on the original fea-
tures to remove the redundancy in features. Our method can
perform feature selection on different feature spaces simulta-
neously so that we do not perform PCA on the original fea-
tures for our method and its previous version (LCFS).
Table 1 shows the MAP scores achieved by PLS, BLM, CCA,
CDFE, GMMFA, GMLDA, CCA-3V, LCFS and our method
(JFSSL) on the Pascal VOC dataset. To illustrate the impor-
tance of PCA, the results of GMMFA without performing
PCA on the original features are also reported in Table 1,
which are much worse than those of performing PCA. We
observe that our method (JFSSL) and its previous version
(LCFS) outperform its several counterparts. This may be
because JFSSL and LCFS select the relevant and discrimina-
tive features from different modalities simultaneously, while
learning the common subspace. The learnt common sub-
space of JFSSL is more compact and effective by exploiting
the inter-modality and intra-modality similarity relation-
ships, which further improves the performance. From
Table 1, we also see that CDFE, GMMFA, GMLDA, CCA-3V,
LCFS and JFSSL perform better than PLS, BLM and CCA.
This is because BLM, CCA and PLS only use pairwise infor-
mation, but CDFE, GMMFA, GMLDA, CCA-3V, LCFS and
JFSSL use class information, which provides much better
separation between classes in the common subspace.

The corresponding precision-scope curves and precision-
recall curves are plotted in Fig. 3. The scope (i.e., the top K

TABLE 1
MAP Comparison of Different Methods on the

Pascal VOC Dataset

Methods Image query Text query Average

PCA+PLS 0.2757 0.1997 0.2377
PCA+BLM 0.2667 0.2408 0.2538
PCA+CCA 0.2655 0.2215 0.2435
PCA+CDFE 0.2928 0.2211 0.2569
PCA+GMMFA 0.3090 0.2308 0.2699
GMMFA 0.2253 0.1695 0.1974
PCA+GMLDA 0.3094 0.2448 0.2771
PCA+CCA-3V 0.3146 0.2562 0.2854
LCFS 0.3438 0.2674 0.3056
JFSSL 0.3607 0.2801 0.3204

Fig. 3. Performance of different methods on the Pascal VOC dataset, based on precision-scope curve (a-b) for K = 50 to 1,000 and precision-recall
curve (c-d).

TABLE 2
MAP Comparison of Different Methods on the NUS-WIDE Dataset

Query PCA+PLS PCA+BLM PCA+CCA PCA+CDFE PCA+GMMFA PCA+GMLDA PCA+CCA-3V LCFS JFSSL

Image 0.2752 0.2976 0.2872 0.2595 0.2983 0.3243 0.3513 0.3830 0.4035
Text 0.2661 0.2809 0.2840 0.2869 0.2939 0.3076 0.3260 0.3460 0.3747
Average 0.2706 0.2892 0.2856 0.2732 0.2961 0.3159 0.3386 0.3645 0.3891

Fig. 4. Performance of different methods on the NUS-WIDE dataset, based on precision-scope curve (a-b) for K = 1,000 to 20,000 and precision-
recall curve (c-d).
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retrieved items) for the precision-scope curves varies from
K ¼ 50 to 1,000. Figs. 3a and 3b shows the performance of
different methods based on the precision-scope curves for
both forms of cross-modal retrieval tasks, i.e., Image query
versus Text database and Text query vs. Image database.
We observe that compared with its several counterparts,
our method obtains better results for both tasks. Figs. 3c
and 3d shows the performance of different methods based
on the precision-recall curves, and our method also outper-
forms other methods for both forms of cross-modal
retrieval. Fig. 6 shows the top nine images retrieved by
JFSSL, CCA-3V, GMLDA and CCA respectively, given the
tags “aeroplane+sky+building+shadow”.

4.5.2 Results on NUS-WIDE Dataset

For the experiments on the NUS-WIDE dataset, Principal
Component Analysis is also performed on the original fea-
tures to remove redundancy in features for the compared

methods. Table 2 shows the MAP scores achieved by PLS,
BLM, CCA, CDFE, GMMFA, GMLDA, CCA-3V, LCFS and
JFSSL on the NUS-WIDE dataset. We observe that our
method outperforms its several counterparts. The experi-
mental results are similar to those on the Pascal VOCdataset.

Fig. 4 shows the corresponding precision-scope curves
(a-b) and precision-recall curves (c-d) for both forms of
cross-modal retrieval tasks, i.e., Image query versus Text
database and Text query versus Image database. We
observe that compared with its several counterparts, our
method performs best for both tasks.

4.5.3 Results on Wiki Dataset

Due to the low dimensions of image and text features them-
selves on theWiki dataset, PCA is not used here to reduce the
dimensions of the original features here. Table 3 shows the
MAP scores of different approaches on the Wiki dataset.
LCFS achievesMAP scores of 0.2798 and 0.2141 for the image
query and text query respectively, only a little bit better than
those of GMMFA andGMLDA. The reason is that the dimen-
sions of image and text features are low so that the ‘21-norms
of our method for feature selection hardly takes effect. JFSSL
achieves better performance (MAP scores of 0.3063 and
0.2275 for the image and text query respectively) by exploit-
ing the inter-modality and intra-modality similarity relation-
ships through the multimodal graph regularization. We also
see that CDFE,GMMFA,GMLDA, CCA-3V and ourmethods
(LCFS and JFSSL) perform better than PLS, BLM, and CCA
because of taking the semantic information into account.

The corresponding precision-scope curves and precision-
recall curves are plotted in Fig. 5. From the precision-scope
curves in (a-b), we can see that for both forms of

TABLE 3
MAP Comparison of Different Methods on the Wiki Dataset

Methods Image query Text query Average

PLS 0.2402 0.1633 0.2032
BLM 0.2562 0.2023 0.2293
CCA 0.2549 0.1846 0.2198
CDFE 0.2655 0.2059 0.2357
GMMFA 0.2750 0.2139 0.2445
GMLDA 0.2751 0.2098 0.2425
CCA-3V 0.2752 0.2242 0.2497
LCFS 0.2798 0.2141 0.2470
JFSSL 0.3063 0.2275 0.2669

Fig. 5. Performance of different methods on theWiki dataset, based on precision-scope curve (a-b) forK = 50 to 1,000 and precision-recall curve (c-d).

Fig. 6. An example of cross-modal retrieval using text query (i.e., the tags ”aeroplane+sky+building+shadow”) on the Pascal VOC dataset. Red bor-
der indicates a incorrect retrieval result.
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cross-modal retrieval, our method finds more number of
correct matches in the top K documents than its compared
methods. Our method also obtains better performance in
terms of precision-recall curve, as shown in Figs. 5c and 5d.

Fig. 7 shows four examples of text queries and the top
three images retrieved by our method. In each case, the
query text and its paired image are shown at the left, and
the top three images are shown at the right. Note that our
method finds the closest matches at semantic level, i.e., the
common subspace pre-computed by class labels. The
retrieved images are perceived as belonging to the same cat-
egory of the query text (“Music” at the top row, “Warfare”
at the second row, “Biology” at the third row, and
“Literature & theatre” at the bottom row).

From the experiments on the three datasets, we can draw
the following conclusions:

� CDFE, GMMFA, GMLDA, CCA-3V, JFSSL and its
previous version achieve better results than PLS,
BLM and CCA. The reason is that PLS, BLM and
CCA only care about pair-wise closeness in the com-
mon subspace, but CDFE, GMMFA, GMLDA, CCA-
3V, JFSSL and its previous version utilize class infor-
mation to obtain much better separation between
classes in the common subspace, which improves
the performance. Hence, it is helpful for cross-modal
retrieval to learn a discriminative common subspace.

� Compared with several state-of-the-art methods, our
proposed method (JFSSL) consistently performs bet-
ter. One of the reasons is that JFSSL selects the rele-
vant and discriminative features from different
modalities simultaneously, while learning a common
subspace. It is important for cross-modal retrieval to
select the relevant and discriminative features
because redundant and irrelevant features affect the
performance much. The multimodal graph regulari-
zation further improves the performance of the

proposed method, suggesting the usefulness of
inter-modality and intra-modality similarity rela-
tionships among different modalities of data objects.

4.6 Image-to-Image Retrieval

Although our main goal is cross-modal retrieval, we also
perform the image-to-image retrieval task on the Wiki data-
set. Given a query image, we project its raw feature into the
learnt space, and use it to retrieve the most similar images
from the database. We randomly select 200 images form the
testing set as the query, and take the rest of images as the
database.

Table 4 shows the MAP comparison of different methods
on the Wiki dataset for the image-to-image retrieval. The
subspace learning methods perform better than raw fea-
tures. It indicates that there is a benefit to explicitly map the
raw feature into the learnt space. It may be because the texts
carry the information which could be complementary to
images. As a result, we could obtain more accurate repre-
sentations in the learnt space than raw features. Moreover,
JFSSL performs best. The reason is that it not only performs
feature selection and subspace learning jointly, but also
incorporates the similarity relationships into the learnt
representation.

4.7 Three-Modality Case

Since the proposed framework is formulated for more than
two modalities, we evaluate its effectiveness in the three-
modality case on the Wiki dataset. Currently to the best of
our knowledge, there are no three or more modalities of
datasets available publicly in the literature. The Wiki data-
set contains two modalities of data: text and image. To sim-
ulate a three-modality setting, 4,096-dimensional CNN
features of images are extracted by Caffe [61] as another vir-
tual modality [62]. Here 128-dim SIFT histogram, 10-dim
LDA feature and 4,096-dimensional CNN features are used
as Modality A, Modality B and Modality C respectively.
Since the compared methods cannot handle the three-
modality case directly, we apply them to the three-modality
case in the following way: take A ! ðB;CÞ as example, A is
served as the query and retrieved results contain data from

Fig. 7. Four examples of cross-modal retrieval using text queries on the
Wiki dataset. The text query and ground truth image are shown on the left;
the top three images retrieved by our method are presented at the right.

TABLE 4
MAP Comparison of Different Methods on the Wiki Dataset for the Image-to-Image Retrieval Task

Task Raw Feature PLS BLM CCA CDFE GMMFA GMLDA CCA-3V LCFS JFSSL
Image To Image 0.1504 0.1592 0.1565 0.1594 0.1571 0.1613 0.1615 0.1657 0.1678 0.1734

TABLE 5
MAP Comparison of Different Methods on the Wiki Dataset in

the Three-Modality Case

Query Modality A Modality B Modality C

PLS 0.1629 0.1653 0.2412
BLM 0.1673 0.2167 0.2607
CCA 0.1733 0.1722 0.2434
CDFE 0.1882 0.1836 0.2548
GMMFA 0.2005 0.1961 0.2551
GMLDA 0.1841 0.1700 0.2525
CCA-3V 0.2301 0.1720 0.2665
LCFS 0.2292 0.3065 0.3072
JFSSL 0.2636 0.3203 0.3354
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B and C. For A and B, we use the projections learned from A
and B to map A and B into the learnt space, in which the
presentations are ZA and ZB respectively. Then, we learn
projections from A and C, and project C into the learnt
space, in which the presentation of C is ZC . Through
exploiting the learnt representations, we can use ZA as the
query to retrieve ZB and ZC .

Table 5 shows the MAP comparison on the Wiki dataset
in the three-modality case. We can see that our JFSSL out-
performs the compared methods in three cross-modal
retrieval tasks. This is mainly due to the fact that our formu-
lation can model the correlations between different modali-
ties more accurately in the three-modality case. The
compared methods are designed for only the two-modality
case. Although CCA-3V is a 3-view method, it treats super-
vised information (i.e., class label) as a view. Hence, CCA-
3V is essentially designed for the two-modality case. These
compared methods are not suitable for the three-modality
case, which leads to poor performance accordingly.

4.8 Evaluation of Regularization Terms

We evaluate the importance of the ‘21-norm term and the
multimodal graph regularization term in our framework.
Table 6 shows the MAP comparison on the Wiki dataset in
the three-modality case when replacing or removing the
regularization terms. We test the cross-modal retrieval per-
formance when the ‘21-norm is replaced with ‘2 norm. We
can see that the ‘21-norm is indeed useful, which can learn
sparse projection matrix for different modalities of data
simultaneously. We also evaluate the framework without
the multimodal graph regularization term (and without the
intra-modal similarity relationships). It can be seen that the
multimodal graph regularization term, which exploits the
inter-modality and intra-modality similarity relationships,
is beneficial for the cross-modal retrieval.

4.9 Performance with Different Types of Features

We also test the cross-modal retrieval performance with dif-
ferent types of features for images and texts on the Wiki

dataset. Besides the features provided by the Wiki dataset
itself, 4,096-dimensional CNN features for images are
extracted by Caffe, and 5,000-dimensional feature vectors for
texts are extracted by using the bag of words representation
with the TF-IDF weighting scheme. Table 7 shows the MAP
scores of GMLDA, CCA-3V, LCFS and JFSSL with different
types of features on the Wiki dataset. PCA is performed on
CNN and TF-IDF features for GMLDA and CCA-3V. It can
be seen that all methods achieve better results when using
the CNN features. This is because CNN features are more
powerful for image representation, which has been proved
in many fields. As expected, our proposed JFSSL still outper-
forms its twomajor competitors (i.e., GMLDA andCCA-3V).

Now we look into the selected features by JFSSL for the
Wiki dataset. Since the image features are difficult to illus-
trate, we only demonstrate the selected features by textual
words when using the TF-IDF features. Note that for the
learnt projection U 2 Rd�c, each column in U weights the
contribution of all words to the corresponding semantics.
The corresponding words with large value Uij are the
selected ones. We sort each column by which the selected
words are ranked ahead. We present the selected words on
some categories from the Wiki dataset in Fig. 8. It can be
seen that the selected words are relevant to the correspond-
ing semantic concepts.

4.10 Parameter Sensitivity Analysis

There are several parameters involved in the proposed
method, i.e., the weighting parameters �1, �2 and the trade-
off parameter b. We tune these three parameters in the range
of f0:001; 0:01; 0:1; 1; 10; 100g. First, we fix b and report the
performance when �1 and �2 are changing. The experimental
results on the three datasets for Image query versus Text
database and Text query versus Image database tasks are
shown in Figs. 9 and 10, respectively. We observe that the
performance of our algorithm varies when the parameters

TABLE 6
Evaluation of Regularization Terms on the Wiki Dataset in the

Three-Modality Case

Query Modality A Modality B Modality C

JFSSL 0.2636 0.3203 0.3354
JFSSL(with ‘2 norm) 0.2486 0.3097 0.3294
JFSSL(�2 ¼ 0) 0.2347 0.3085 0.3040
JFSSL(b ¼ 0) 0.2513 0.3166 0.3193

TABLE 7
MAP Comparison with Different Features on the Wiki Dataset

Query Methods
Features (Image/Text)

SIFT/ LDA CNN/ LDA SIFT/ TF-IDF CNN/ TF-IDF

Image GMLDA 0.2751 0.4084 0.2782 0.4455
CCA-3V 0.2752 0.4049 0.2862 0.4370
LCFS 0.2798 0.4132 0.2978 0.4553
JFSSL 0.3063 0.4279 0.3080 0.4670

Text GMLDA 0.2098 0.3693 0.1925 0.3661
CCA-3V 0.2242 0.3651 0.2238 0.3832
LCFS 0.2141 0.3845 0.2134 0.3978
JFSSL 0.2275 0.3957 0.2257 0.4102

Fig. 8. Selected words on some categories by JFSSL from the Wiki dataset.
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are different. Generally speaking, the proposed method
obtains better performance when �1 is 0.1 to 10 for the data-
sets. This is because �1 controls the sparsity of the projection
matrices, a too small value cannot select out the relevant and
discriminative features, but a too large value will lead to
remove some useful features. We also observe similar results
for the parameter �2, which is the weighting parameter of the
multimodal graph regularization. We also fix �1 and �2 to
test the performance on the three datasets for both forms of
tasks when b is changing. As shown in Fig. 11, the proposed
method is notmuch sensitive to the trade-off parameter b.

4.11 Convergence

An iterative optimization algorithm is proposed to solve the
objective function. For practical applications, it is interesting

to see how fast the iterative algorithm converges. In Fig. 12,
we plot the convergence curves of our iterative algorithm
with respect to the objective function value of (4) at each itera-
tion on Pascal VOC, NUS-WIDE, and Wiki datasets, respec-
tively. In this figure, the objective function value of (4)
monotonically decreases at each iteration. More specifically,
the algorithm generally convergeswithin about five iterations
for all datasets. The running time2 of convergence on the
Pascal VOC, NUS-WIDE, and Wiki datasets are 12.8 seconds,
0.6 hour, and 1.7 seconds, respectively. The bottleneck lies in
the multimodal graph construction, so our future work is to
further reduce the running time of graph construction.

5 CONCLUSION

In this paper, we have proposed a novel joint learning
framework to solve the problem of cross-modal retrieval,
which consists of subspace learning for different modalities,
the ‘21-norms for coupled feature selection, and the

Fig. 9. Performance variation for the Image query versus Text database
task with respect to �1 and �2 when we fix b for the Pascal VOC, NUS-
WIDE and Wiki datasets respectively.

Fig. 10. Performance variation for the Text query versus Image database
task with respect to �1 and �2 when we fix b for the Pascal VOC, NUS-
WIDE and Wiki datasets respectively.

Fig. 11. Performance variation with respect to b when we fix �1 and �2 for
the Pascal VOC, NUS-WIDE and Wiki datasets respectively.

Fig. 12. Convergence curves of the objective function value in Eq. (6) using
Algorithm 1. The figure shows that the objective function value monotoni-
cally decreases until convergence by applying the iterative algorithm.

2. We run our matlab code on a 2-core Xeon 2.67 GHz workstation
with 128 GB RAM.
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multimodal graph regularization for preserving the inter-
modality and intra-modality similarity. Under the proposed
framework, different projection matrices are learnt to map
different modal data into a common subspace, and relevant
and discriminative features for different spaces are selected
simultaneously in the projection procedure. Furthermore,
the inter-modality and intra-modality similarity are well
preserved through the multimodal graph regularization
while mapping. To solve this joint learning problem, we
have presented an iterative optimization algorithm along
with its convergence analysis. Experimental results on three
cross-modal datasets have demonstrated that the proposed
method performs better than several relevant state-of-the-
art subspace methods.

ACKNOWLEDGMENTS

This work is jointly supported by National Basic Research
Program of China (2012CB316305), and National Natural
Science Foundation of China (61420106015,61525306). Liang
Wang is the corresponding author of this paper.

REFERENCES

[1] R. Bekkerman and J. Jeon, “Multi-modal clustering for multimedia
collection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007,
pp. 1–8.

[2] P. K. Atrey and M. A. Hossain, “Multimodal fusion for multime-
dia analysis: A survey,” Multimedia Syst., vol. 16, no. 6, pp. 345–
379, 2010.

[3] Y. F. Fu, T. M. Hospedales, T. Xiang, and S. G. Gong, “Learning
multimodal latent attributes,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 2, pp. 303–316, Feb. 2014.

[4] C. Xu, D. C. Tao, and C. Xu, “Large-margin multi-view informa-
tion bottleneck,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 8, pp. 1559–1572, Aug. 2014.

[5] F. Wu, Y. Yuan, X. Liu, J. Shao, Y. Zhuang, and Z. Zhang, “The
heterogeneous feature selection with structual sparsity for multi-
media annotation and hashing: A survey,” Int. J. Multimedia Inf.
Retrieval, vol. 1, no. 1, pp. 3–15, 2012.

[6] F. Wu, Y. Yuan, and Y. Zhuang, “Heterogeneous feature selection
by group lasso with logistic regression,” in Proc. 18th ACM Int.
Conf. Multimedia, 2010, pp. 983–986.

[7] K. Y. Wang, R. He, W. Wang, L. Wang, and T. N. Tan, “Learning
coupled feature spaces for cross-modal matching,” in Proc. IEEE
Int. Conf. Comput. Vis., 2013, pp. 2088–2095.

[8] L. Sun, S. Ji, and J. Ye, “A least squares formulation for canonical
correlation analysis,” in Proc. 25th Int. Conf. Mach. Learn., 2008,
pp. 1024–1031.

[9] R. He, T. N. Tan, L. Wang, and W. Zheng, “‘21 regularized corren-
tropy for robust feature selection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2012, pp. 2504–2511.

[10] D. Blei and M. Jordan, “Modeling annotated data,” in Proc. 26th
Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2003,
pp. 127–134.

[11] D. Putthividhy, H. Attias, and S. Nagarajan, “Topic regression
multi-modal latent Dirichlet allocation for image annotation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2010, pp. 3408–3415.

[12] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[13] Y. Jia, M. Salzmann, and T. Darrell, “Learning cross-modality sim-
ilarity for multinomial data,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 2407–2414.

[14] N. Srivastava and R. Salakhutdinov, “Multimodal learning with
deep Boltzmann machines,” in Proc. Adv. Neural Inf. Process. Syst.,
2012, pp. 2231–2239.

[15] D. Li, N. Dimitrova, M. Li, and I. K. Sethi, “Multimedia content
processing through cross-modal association,” in Proc. ACM Int.
Conf. Multimedia, 2003, pp. 604–611.

[16] W. Wu, J. Xu, and H. Li, “Learning similarity function between
objects in heterogeneous spaces,” Microsoft Res., Redmond, WA,
USA, Tech. Rep. MSR-TR-2010-86, 2010.

[17] A. Mignon and F. Jurie, “CMML: A new metric learning approach
for cross modal matching,” in Proc. Asian Conf. Comput. Vis., 2012,
pp. 1–14.

[18] N. Quadrianto and C. H. Lampert, “Learning multi-view neigh-
borhood preserving projections,” in Proc. 28th Int. Conf. Mach.
Learn., 2011, pp. 425–432.

[19] X. H. Zhai, Y. Peng, and J. Xiao, “Heterogeneous metric learning
with joint graph regularization for cross-media retrieval,” in Proc.
AAAI, 2013, pp. 1198–1204.

[20] X. Y. Lu, F. Wu, S. L. Tang, Z. F. Zhang, X. F. He, and Y. T.
Zhuang, “A low rank structural large margin method for cross-
modal ranking,” in Proc. 36th Annu. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2013, pp. 433–442.

[21] F. Wu, X. Y. Lu, Z. F. Zhang, S. C. Yan, Y. Rui, and Y. T. Zhuang,
“Cross-media semantic representation via bi-directional learning
to rank,” in Proc. ACM Int. Conf. Multimedia, 2013, pp. 877–886.

[22] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios,
“Data fusion through cross-modality metric learning using Simi-
larity-sensitive hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2010, pp. 3594–3601.

[23] Y. Zhen and D.-Y. Yeung, “Co-regularized hashing for multi-
modal data,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1385–
1393.

[24] J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber,
“Multimodal similarity-preserving hashing,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 4, pp. 824–830, Apr. 2014.

[25] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Cannonical corre-
lation analysis: An overview with application to learning meth-
ods,”Neural Comput., vol. 16, no. 12, pp. 2639–2664, 2004.

[26] T.-K. Kim, J. Kittler, and R. Cipolla, “Discriminative learning and
recognition of image set classes using canonical correlations,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1005–
1018, Jun. 2007.

[27] R. Rosipal and N. Kramer, “Overview and recent advances in par-
tial least squares,” in Proc. Statistical Optimization Perspectives
Workshop: Subspace, Latent Struct. Feature Selection, 2006, pp. 34–51.

[28] A. Sharma, A. Kumar, H. Daume, and D. W. Jacobs, “Generalized
multiview analysis: A discriminative latent space,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2012, pp. 2160–2167.

[29] J. B. Tenenbaum and W. T. Freeman, “Separating style and con-
tent with bilinear models,” Neural Comput., vol. 12, no. 6, pp.
1247–1283, 2000.

[30] N. Rasiwasia, J. C. Pereira, E. Coviello, G. Doyle, G. Lanckriet, R.
Levy, and N. Vasconcelos, “A new approach to cross-modal mul-
timedia retrieval,” in Proc. 18th ACM Int. Conf. Multimedia, 2010,
pp. 251–260.

[31] Y. C. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view
embedding space for internet images, tags, and their semantics,”
Int. J. Comput. Vis., vol. 106, no. 2, pp. 210–233, 2014.

[32] J. C. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. Lanckriet, R.
Levy, and N. Vasconcelos, “On the role of correlation and abstrac-
tion in cross-modal multimedia retrieval,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 3, pp. 521–535, Mar. 2014.

[33] R. Udupa and M. Khapra, “Improving the multilingual user expe-
rience of wikipedia using cross-language name search,” in Proc.
Human Language Technol.: Annu. Conf. North Am. Chapter Assoc.
Comput. Linguistics, 2010, pp. 492–500.

[34] A. Li, S. Shan, X. Chen, and W. Gao, “Face recognition based on
non-corresponding region matching,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2011, pp. 1060–1067.

[35] A. Sharma and D. W. Jacobs, “Bypassing synthesis: PLS for face
recognition with pose, low-resolution and sketch,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2011, pp. 593–600.

[36] Y. Chen, L. Wang, W. Wang, and Z. Zhang, “Continuum regres-
sion for cross-modal multimedia retrieval,” in Proc. IEEE Int. Conf.
Image Process., 2012, pp. 1949–1952.

[37] V. Mahadevan, C.-W. Wong, T. T. Liu, N. Vasconcelos, and L. K.
Saul, “Maximum covariance unfolding: Manifold learning for
bimodal data,” in Proc. Adv. Neural Inf. Process. Syst., 2011, pp.
918–926.

[38] X. B. Mao, B. B. Lin, D. Cai, X. F. He, and J. Pei, “Parallel field
alignment for cross media retrieval,” in Proc. 21st ACM Int. Conf.
Multimedia, 2013, pp. 897–906.

[39] D. Lin and X. Tang, “Inter-modality face recognition,” in Proc. 9th
Eur. Conf. Comput. Vis., pp. 13–26, 2006.

2022 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 10, OCTOBER 2016

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 24,2021 at 11:46:31 UTC from IEEE Xplore.  Restrictions apply. 



[40] Y. T. Zhuang, Y. F. Wang, F. Wu, Y. Zhang, and W. M. Lu,
“Supervised coupled dictionary learning with group structures
for multi-modal retrieval,” in Proc. AAAI, 2013, pp. 1070–1076.

[41] Y. Yang, D. Xu, F. Nie, J. B. Luo, and Y. T. Zhuang, “Ranking with
local regression and global alignment for cross media retrieval,”
in Proc. 17th ACM Int. Conf. Multimedia, 2009, pp. 175–184.

[42] Y. T. Zhuang, Y. Yang, and F. Wu, “Mining semantic correlation of
heterogeneous multimedia data for cross-media retrieval,” IEEE
Trans. Multimedia, vol. 10, no. 2, pp. 221–229, Feb. 2008.

[43] Z. W. Lu and Y. X. Peng, “Exhaustive and efficient constraint
propagation: A graph-based learning approach and its
applications,” Int. J. Comput. Vis., vol. 103, no. 3, pp. 306–325, 2013.

[44] Z. W. Lu and Y. Peng, “Unified constraint propagation on multi-
view data,” in Proc. AAAI, 2013, pp. 640–646.

[45] X. H. Zhai, X. Y. Peng, and J. G. Xiao, “Learning cross-media joint
representation with sparse and semisupervised regularization,”
IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 6, pp. 965–978,
Jun. 2014.

[46] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for
large multi-class tasks,” in Proc. Adv. Neural Inf. Process. Syst.,
2010, pp. 163–171.

[47] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[48] J. Weston, S. Bengio, and N. Usunier, “WSABIE: Scaling up to
large vocabulary image annotation,” in Proc. 22nd Int. Joint Conf.
Artif. Intell., 2011, pp. 2764–2770.

[49] K. Q. Weinberger and O. Chapelle, “Large margin taxonomy
embedding for document categorization,” in Proc. Adv. Neural Inf.
Process. Syst., 2009, pp. 1737–1744.

[50] A. Frome, G. S. Corrado, J. Shlens, et al., “Devise: A deep visual-
semantic embedding model,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 2121–2129.

[51] D. Cai, X. F. He, and J. W. Han, “Spectral regression for efficient
regularized subspace learning,” in Proc. IEEE Int. Conf. Comput.
Vis., 2007, pp. 1–8.

[52] R. He, W. Zheng, and B. Hu, “Maximum correntropy criterion for
robust face recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 8, pp. 1561–1576, Aug. 2011.

[53] M. Nikolova and M. K. Ng, “Analysis of half-quadratic minimiza-
tion methods for signal and image recovery,” SIAM J. Sci. Comput.,
vol. 27, no. 3, pp. 937–966, 2005.

[54] F. Nie, H. Huang, X. Cai, and C. Ding, “Efficient and robust fea-
ture selection via joint ‘21-norms minimization,” in Proc. Adv. Neu-
ral Inf. Process. Syst., 2010, pp. 1813–1821.

[55] S. Hwang and K. Grauman, “Reading between the lines: Object
localization using implicit cues from image tags,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 34, no. 6, pp. 1145–1158, Jun. 2012.

[56] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng,
“NUS-WIDE: A real-world web image database from National
University of Singapore,” in Proc. ACM Int. Conf. Image Video
Retrieval, 2009, pp. 1–9.

[57] Z. Yu, F. Wu, Y. Yang, Q. Tian, J. B. Luo, and Y. T. Zhuang,
“Discriminative coupled dictionary hashing for fast cross-media
retrieval,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 395–404.

[58] D. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[59] N. Rasiwasia, P. J. Moreno, and N. Vasconcelos, “Bridging the
gap: Query by semantic example,” IEEE Trans. Multimedia, vol. 9,
no. 5, pp. 923–938, Aug. 2007.

[60] D. H. Lin and X. O. Tang, “Inter-modality face recognition,” in
Proc. 9th Eur. Conf. Comput. Vis., 2006, pp. 13–26.

[61] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[62] G. G. Ding, Y. C. Guo, and J. L. Zhou, “Collective matrix factoriza-
tion hashing for multimodal data,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2014, pp. 4321–4328.

Kaiye Wang received the BS degree in computer
science and technology from Jilin University, the
MS degree in computer application technology
from Jilin University, and PhD degree from the
National Laboratory of Pattern Recognition, Insti-
tute of Automation of the Chinese Academy of
Sciences in 2009, 2012, and 2015, respectively.
His research interests include cross-modal
retrieval/hashing, multiview learning, and repre-
sentation learning.

Ran He received the BE degree in computer sci-
ence from Dalian University of Technology, the
MS degree in computer science from Dalian Uni-
versity of Technology, and the PhD degree in pat-
tern recognition and intelligent systems from the
Institute of Automation, Chinese Academy of Sci-
ences, in 2001, 2004, and 2009, respectively.
Since September 2010, he has been joined
NLPR, where he is currently a project professor.
He has widely published at highly ranked interna-
tional journals, such as TPAMI, TKDE, TIP,

CVPR and AAAI. He is a senior member of the IEEE.

Liang Wang received both the BEng and MEng
degrees from Anhui University in 1997 and 2000,
respectively, and the PhD degree from the Insti-
tute of Automation, Chinese Academy of Scien-
ces (CAS) in 2004. He is currently a full
Professor of Hundred Talents Program at the
NLPR, Institute of Automation, CAS, China. His
major research interests include machine learn-
ing, pattern recognition, and computer vision. He
has widely published at highly ranked interna-
tional journals such as IEEE TPAMI and IEEE

TIP, and leading international conferences such as CVPR, ICCV, and
ICDM. He is a senior member of the IEEE.

Wei Wang received the BE degree from the
Department of Automation, Wuhan University in
2005, and the PhD degree from the School of
Information Science and Engineering, Graduate
University of Chinese Academy of Sciences
(GUCAS) in 2011. Since July 2011, he has been
joined NLPR, where he is currently an assistant
professor. His research interests focus on com-
puter vision, pattern recognition, visual attention,
and deep learning.

Tieniu Tan received the BSc degree in electronic
engineering from Xi’an Jiaotong University,
China, in 1984, and the MSc and PhD degrees in
electronic engineering from Imperial College Lon-
don, United Kingdom, in 1986 and 1989, respec-
tively. He was the director general in the CAS
Institute of Automation from 2000 to 2007, where
he is currently a professor and the former director
(1998-2013) in the NLPR since 1998. He also
serves as a vice president in the CAS. He has
published 11 edited books or monographs and

more than 400 research papers in refereed international journals and
conferences in the areas of image processing, computer vision and pat-
tern recognition. He is a fellow of the CAS, TWAS, IEEE, and IAPR, and
an International Fellow of the United Kingdom Royal Academy of Engi-
neering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ETAL.: JOINT FEATURE SELECTION AND SUBSPACE LEARNING FOR CROSS-MODAL RETRIEVAL 2023

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 24,2021 at 11:46:31 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


